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On the stability of a heterogeneous shear layer 
subject to a body force 

By J. MENKES 
Jet  Propulsion Laboratory, California Institute of Technology, 

Pasadena 

(Received 15 August 1960 and in revised form 30 March 1961) 

The effects of density variation and body force on the stability of a hetero- 
geneous horizontal shear layer are investigated. The density is assumed to 
decrease exponentially with height, and the body force is assumed to be derivable 
from a potential; the velocity distribution in the shear layer is taken to be 
U(y) = tanh y. The method of small disturbances is employed to obtain a family 
of neutral stability curves depending on the choice of the Richardson number. 
It is demonstrated, furthermore, that the value of the critical Richardson 
number depends on the magnitude of the non-dimensional density gradient. 

1. Introduction 
It is a frequent occurrence in nature that two fluids of different densities 

flow one on top of the other. If the flow is predominantly horizontal, and if the 
density diminishes rapidly in the upward direction, then the process of turbulent 
mixing must cause heavier fluid elements to be moved above lighter ones and 
lighter fluid elements below heavier ones. Both displacements consume energy 
that has to be extracted from the mean flow at the expense of energy that might 
be available for the maintenance of turbulence.? The same considerations apply 
quite generally to work against any body force. The present paper, an extension 
of an earlier analysis (Menkes 1959), is one of a series of researches (see, for ex- 
ample, Prandtl 193 1 ; Taylor 193 1 ; Goldstein 193 1 ; Drazin 1958) undertaken to 
establish the limits of stability of a shear flow in a stably stratified medium. 

2. Analysis 

inviscid fluid under the action of a body force, gVy, are Euler’s equation, 
The equations of motion governing the behaviour of an incompressible 

the condition of incompressibility, 
2- - 0, 
13t 

t This argument, which follows Prandtl’s exposition (Prandtl, 1952, p. 131), presup- 
poses that the total kinetic energy can be resolved into two terms : one term represents the 
contribution of the mean flow and the other that giving rise to the turbulent Reynolds 
stresses. The energy partition is assumed to be unaffected by the density stratification. 
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and the equation of continuity, 
v .u  = 0. (3) 

The velocity components u, the pressure p ,  and the density p are assumed to 
consist of a time-independent part and of a perturbation. Thus we write 

u = V[U(Y) + Y/(X,  Y, t)l,  (4a) 

p = P(Y) +P'(X, Y, t ) ,  (46) 

P = PO[P(Y) +PI@, Y, t)l, (4c) 

$' = $(y) exp [ik(x-ct)], (c = cr+ici). ( 4 4  

= - VYCX, Y, t), 

Here V is the velocity at y = k 00 and yY is a perturbation stream function; U(y), 
P(y) ,  and p(y) describe the ambient state whose stability is to be investigated; 
k is a wave-number and c a complex phase velocity. Also, x = xl/d and y = yl/d, 
where x1 and y1 are the physical co-ordinates and d is so chosen that dU/dy = 1 
a t  y = 0; thus d characterizes the width of the transition layer. Denoting the 
Froude number, V2/gd, by F ,  setting p = exp ( - 2Ly), where L is a dimensionless 
density gradient, and eliminating p' andp' from equations (l), (2), and (3) yields 

- 0, (U-c)  ($"- k2$) - U'$+ (lnp)' [( U-c)  $' - (U-c) '  $1 - ~ __ - (1nP)' $ 
F U - c  

where primes denote differentiation with respect to y. ( 5 )  

At this point we introduce the primary velocity distribution U(y) = tanh y as 
the independent variable. Denoting now by primes differentiation with respect to 
U ,  and setting $(y) = $( U )  and 2L/F = J ,  we derive the equation 

#"+a(U)$'+b(LI)$ = 0, 
where 

2 ( U + L )  
( U +  1) ( U -  1)'  

a ( U )  = 

J k2 2 ( U + L )  
( U -  c)2 ( U  + 1 ) 2  ( U  - 1 ) 2 -  ( U  + 1)2 ( U  - 1)2-  ( U -  c) ( U +  1) ( U -  1) '  

b(U)  = 

(7 b) 
with the boundary conditions k$(U)  = 0, a t  U = k 1. ( J  is the Richardson 
number.) 

Equation (6) is of a rather simple type. I ts  singularities, which are located 
at & 1 and c, are regular singularities. It can be demonstrated that the point at  
infinity is also a regular singularity. The substitution into equation (6) of 

2 = ( U -  1)-=1 (U - c)-Qz (U + 1)- # 
yields an equation that has at least one bounded solution at each of the singu- 
larities. The ai are defined by 
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and each represents one of the indices relative to the finite points of the singu- 
larity. After this transformation, equation (6) reads 

(8) -2 = 0, Z”+ -.-+--+++ 1--a, 1-a2 1--a, [ u-1 u-c U-k l  ( r n ) ( U - c ) ( U + l )  
(u7U-r )  

with the boundary conditions replaced by regularity conditions on Z( U )  at 
U = 1 andc. Asufficient condition for the existenceof atrivialsolution 2 = con- 
stant (which, of course, satisfies the boundary conditions identically) is given 
formally by u7 = 0, (9) 

r = 0, (10) 
where u and 7 are the indices relative to the point at  infinity and r is an accessory 
parameter (see Bieberbach 1953). After a considerable amount of tedious, but 
essentially straightforward, algebraic manipulation, we obtain from equations 
(9) and (10) the explicit relations: 

L = - c  I-- 4J ] - t(  1 -p)  [R( 1 -c) (1 - [)* - R( 1 + c) (1 - T)&  - Bc], [ (1 -c2)2 

(11) 

and R2 = __ 3 (12) 

where 

R(p- 2) [(I - c)& (1 -T ) * ]  + J (  1 -c’)-~+ 2 ( , ~ +  1) 

1 +[(I  -8 (1 -7)F 

It is to be noted that equations (1 1) and (12) are not homogeneous in any of 
the quantities J ,  L, k ,  and c; however, there are two equations in four unknowns. 
It was found convenient from a computational point of view to consider L and 
R2 as the primary variables, and J and c as parameters. The equations were 
solved numerically by an iteration technique on an IBM 704 digital computer. 

3. Discussion and results 
In the usual case the neutral stability curve represents possible neutral 

disturbances and separates the stable from the unstable ones, with no ‘ forbidden ’ 
disturbances present anywhere. The stability boundaries displayed in figure 1 
have a meaning slightly different from that commonly accepted. A particular 
boundary separates unstable disturbances from stable ones and from those that 
are physically not realizable. This may be stated in a different way: as the 
boundary is approached from the inside along an arbitrary path one passes over 
possible disturbances, and the closer one gets to the boundary the smaller will 
be the amplification. On the other hand, when the boundary is approached from 
the outside one cannot be sure whether an arbitrary path consists only of per- 
mitted disturbances or not. This implies that the only statement that can be made 
about the attenuation is that if the path consists only of a succession of possible 
disturbances, then as the boundary is approached the attenuation decreases, to 
vanish at  the boundary itself. For practical purposes, however, this distinction is 
immaterial since one may state without ambiguity the maximum value of k2 + L2 
that corresponds to an unstable disturbance, for a prescribed value of J .  
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The present analysis throws into relief the dependence of the stability on the 
relative magnitudes of the wave-number k and the parameter L. The governing 
quantity appears to be k2 + L2. The analysis of Taylor (1931) in which the para- 
meter L was neglected indicated that as the wave-number decreased, the in- 
stability became more pronounced. By including the effect of the density 
gradient, one can stabilize a disturbance that was shown, in the absence of 
a density gradient, to be unstable by virtue of its small wave-number. The 
stabilizing effect of the density gradient is thus clearly demonstrated. 

- C  

FIGURE 1. Stability map. The curves represent the boundaries between unstable dis- 
turbances (inside, shaded) and disturbances which are either damped or physically 
unrealizable. 

The relationship that must exist between L and c, for given values of J ,  to 
obtain a neutral disturbance is displayed in figure 2 .  It is to be noted that 
the curves terminate before reaching the c-axis, thus implying that the only 
solution corresponding to I, = 0 is c = 0, which is the one found by Drazin. 

The accepted convention of referring to a critical Richardson number is 
unfortunate because it conjures up similarities with the critical Reynolds number 
of hydrodynamic stability theory to which it bears hardly any semblance. 
The critical Richardson number represents a number beyond which no virtual 
displacement? of the flow field appears possible if one forces the solution to be 

t The displacement is taken to apply not only to  spatial displacements but also to 
velocity, pressure, etc. 
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exponential in x as in t ,  and furthermore if one rules out the improper eigen- 
functions associated with the continuous spectrum as demonstrated by Eliassen, 
Hoiland & Riis (1953) and Case (1960).7 In  this sense, then, the flow is stable, 
so to say, by default. This is certainly an odd result, but one that has been 
obtained consistently by Taylor, Goldstein, Drazin, and the present author. 

0 

- C  

FIGURE 2. Neutral stability boundaries. 

It appears to be a property of inviscid stability problems. No physical explana- 
tion can be offered, and the mathematical one provides little solace; it only states 
that, for J > J,,, a physical quantity becomes imaginary when subjected to a 
virtual displacement (see Appendix). 

The fact that the disturbance spectrum is finite, due to the presence of a cut-off 
wave-number, does not necessarily imply, however, that the asymptotic flow 
field is undetermined. It has been demonstrated by Case that, in general, the 
solutions associated with the continuous spectrum decay like l / t ,  while Carrier 
& Chang (1959) have shown that the inclusion of the continuous spectrum does 
not change the value of the cut-off wave-number. Thus, without solving the 
initial value problem in the present case, one may reason that the missing solu- 
tions will not affect the stability of the flow. 

7 The author is indebted to a referee for the precise formulation of the statement. 
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Appendix. The relationship between completeness’ and the cut-off 
w ave-number 

The possibility that wave-like solutions to the disturbance equation may not 
exist can be anticipated from the following considerations. Any second-order 
differential equation of the type 

Z”+g(U)Z’+h(U)Z  = 0 

can be reduced to the canonical form 

W ” + I ( U )  w = 0. 

I ( U )  = h-$g2-*g’, 

The invariant I (  U )  is given by 

while the dependent variable is given by W = Zexp$/g(U)dU. When this 
transformation is applied to equation (8) ,  subject to the conditions (9) and (lo), 
we find that the invariant is given by 

+--+- I = -  ___ 
4 (U-1)2 (U-C)2 ( U +  1 - a ~  1 ) 2  I [ 
1 1-a, 1-a, 

I -  2 I ( U - l ) ( U - c )  ( U - l ) ( U + l )  ( U - c ) ( U i l )  
_ _  ’ ( 1 - a l ) ( 1 - a 2 )  +- (1-a1)(1-a3) + (1-a2)(1-a3) ~ _ _ ~ _ _  

For the case where I is constant, it  is well known that I > 0 corresponds to 
wave-like solutions and that I < 0 corresponds to exponential solutions. The 
same criterion still holds if I is a function of the independent variable (see 
Mott 1952, chapter 1). The form of I (  U )  as displayed above makes it plausible 
that for a certain combination of values of ai, which are functions of L, J ,  k and c, 
the magnitude of I( U )  will become negative. If we now try to force the solution 
to be wave-like, we shall find that the velocity perturbation will turn out to be a 
purely imaginary quantity, indicating the physical impossibility of realizing 
such a solution. The detailed calculations have shown that this does actually 
take place when J > (k2+ L2) (1 -c)2, or J > a(1 -cZ)~, whichever is smaller. 
The smaller value of the Richardson number is referred to as the critical one. This 
simple relationship between the invariant and the cut-off wave-number has 
apparently not been noticed before. 

This paper represents the results of one phase of research carried out at the Jet  
Propulsion Laboratory, California Institute of Technology, under Contract 
No. NASw-6, sponsored by the National Aeronautics and Space Administration. 
The paper was presented at the 10th International Congress of Applied Mechanics 
in Stresa, 31 August-7 September 1960. 

The author is indebted to Dr I?. Peabody for help in programming the problem 
for machine calculation and to Mr R. J .  Mueller and Mrs M. Simes who carried 
out most of the calculations. The help of Mrs D. Porter in the preparation of the 
manuscript is gratefully acknowledged. 
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